Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation.
نویسندگان
چکیده
Autotrophic archaeal and bacterial ammonia-oxidisers (AOA and AOB) drive soil nitrification. Ammonia limitation, mixotrophy, and pH have been suggested as factors providing niche specialisation and differentiation between soil AOA and AOB. However, current data from genomes, cultures, field studies, and microcosms suggest that no single factor discriminates between AOA and AOB. In addition, there appears to be sufficient physiological diversity within each group for growth and activity in all soils investigated, with the exception of acidic soils (pH <5.5), which are dominated by AOA. Future investigation of niche specialisation in ammonia-oxidisers, and other microbial communities, requires characterisation of a wider range of environmentally representative cultures, emphasis on experimental studies rather than surveys, and greater consideration of small-scale soil heterogeneity.
منابع مشابه
Characterisation of terrestrial acidophilic archaeal ammonia oxidisers and their inhibition and stimulation by organic compounds
Autotrophic ammonia oxidation is performed by two distinct groups of microorganisms: ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB). AOA outnumber their bacterial counterparts in many soils, at times by several orders of magnitude, but relatively little is known of their physiology due to the lack of cultivated isolates. Although a number of AOA have been cultivated from s...
متن کاملAmmonia-limited conditions cause of Thaumarchaeal dominance in volcanic grassland soil.
The first step of nitrification is carried out by ammonia-oxidizing bacteria (AOB) and archaea (AOA). It is largely unknown, by which mechanisms these microbes are capable of coexistence and how their respective contribution to ammonia oxidation may differ with varying soil characteristics. To determine how different levels of ammonium availability influence the extent of archaeal and bacterial...
متن کاملNiche specialization of terrestrial archaeal ammonia oxidizers.
Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of ...
متن کاملDifferential photoinhibition of bacterial and archaeal ammonia oxidation.
Inhibition by light potentially influences the distribution of ammonia oxidizers in aquatic environments and is one explanation for nitrite maxima near the base of the euphotic zone of oceanic waters. Previous studies of photoinhibition have been restricted to bacterial ammonia oxidizers, rather than archaeal ammonia oxidizers, which dominate in marine environments. To compare the photoinhibiti...
متن کاملHigh-Throughput Analysis of Ammonia Oxidiser Community Composition via a Novel, amoA-Based Functional Gene Array
Advances in microbial ecology research are more often than not limited by the capabilities of available methodologies. Aerobic autotrophic nitrification is one of the most important and well studied microbiological processes in terrestrial and aquatic ecosystems. We have developed and validated a microbial diagnostic microarray based on the ammonia-monooxygenase subunit A (amoA) gene, enabling ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in microbiology
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2012